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ABSTRACT 
 

This paper first describes a class of stochastic mixed-integer programs that have 
column-oriented formulations suitable for solution by a branch-and-price algorithm 
(B&P).  We then survey several examples, and use a stochastic facility-location problem 
(SFLP) for a detailed demonstration of modeling and solution techniques.  Computational 
results with a scenario representation of uncertain costs, demands and capacities show 
that B&P can be orders of magnitude faster than solving the standard formulation by 
branch and bound; and this can be true even for single-scenario, i.e., deterministic, 
problems.  We also demonstrate how B&P can solve SFLP exactly (as exactly as a 
deterministic mixed-integer program) when demands and other parameters can be 
represented as independent, random variables satisfying certain conditions.  Our 
algorithm, based on COIN-OR’s open-source code and run under Microsoft Windows on 
a personal computer, demonstrates just how accessible B&P technology has become.  

 

1 INTRODUCTION  

This paper defines a class of stochastic mixed-integer programs (SMIPs) whose 

instances are amenable to column-oriented formulations, and then shows how to solve 

such formulations with a branch-and-price algorithm (B&P).  The phrase “branch and 

price” was coined by Savelsbergh (1997), but was first proposed by Johnson (1989) and 

implemented by Desrochers and Solomon (1989) and Desrochers et al. (1992).  The 

technique combines dynamic column generation, known widely through the “cutting 

stock problem” (Gilmore and Gomory 1961), with standard branch and bound. 
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Stochastic programmers have only just begun to see that B&P applies to their 

problems, and we find only two papers on the topic:  Damodaran and Wilhelm (2004) 

and Lulli and Sen (2004).  (However, Shiina and Birge 2004 and Singh et al. 2004 use 

column-generation without branch and bound to solve SMIPs.)  Those papers investigate 

specific applications of B&P to stochastic programming.  In contrast, we describe a 

complete class of problems to which B&P applies; in similarity, we show impressive 

computational results. 

We begin by describing a general class of mixed-integer, two-stage, stochastic 

programs whose standard formulations translate easily into column-oriented 

formulations.  We then provide examples, showing how stochastic extensions of several 

well-known deterministic models fit this framework: the elastic generalized assignment 

problem (Brown and Graves 1981); crew-scheduling (Vance et al. 1997, Day and Ryan 

1997); vehicle-routing problems (e.g., Desrosiers et al. 1995); and the origin-destination 

integer multicommodity flow problem (Barnhart et al. 2000).  One additional problem, a 

stochastic facility-location problem (SFLP), guides our detailed exploration of the B&P 

solution approach. 

We initially model and solve a version of SFLP with uncertain demands, costs 

and capacities, all represented through scenarios.  Such representations often appear in 

the stochastic-programming literature (e.g., Butler and Dyer 1999, Chen et al. 2002, 

Ahmed and Sahinidis 2003, Lulli and Sen 2004).  (The primary advantage to a scenario-

based representation is that it allows arbitrary dependence among uncertain parameters.)  

However, another common formulation approach defines individual probability 

distributions for the stochastic program’s parameters; typically, these parameters are 
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assumed independent (e.g., Bertsimas 1992, Zhou and Liu 2003).  We will show how 

B&P can solve SFLP in this situation, too.  Furthermore, we will solve the problem 

exactly, that is, with the same certitude that prevails in deterministic mixed-integer 

programs.  This contrasts with alternative solution procedures that provide only 

probabilistic or asymptotic guarantees for solution quality (e.g., , Carøe and Tind 1998, 

Sen and Higle 2000, Ahmed and Sahinidis 2003). 

Solution methods for two-stage stochastic programs (TSSPs) with mixed-integer 

variables and “scenario uncertainty” typically employ Benders decomposition (Benders 

1962), or extensions thereof, to the original model.  Examples include the integer L-

shaped decomposition from Laporte and Louveaux (1993), and the methods developed by 

Carøe and Tind (1998) and by Sen and Higle (2000).  Unfortunately, all of these 

decompositions use a master problem whose linear-programming relaxation is no 

stronger than the linear-programming relaxation of the original model (measured over the 

master-problem variables which the two formulations have in common).  Consequently, 

these decompositions will suffer if the original model formulation has a poor continuous 

relaxation.  In contrast, B&P solves a column-oriented reformulation of a model—also by 

a form of decomposition—but that reformulation will normally have a much tighter 

relaxation than the original model. 

We construct our B&P algorithm using COIN-OR’s open-source code (COIN 

2004) coupled with a commercial optimizer, CPLEX (ILOG 2002), to solve the master 

problem and certain subproblems.  A personal computer with a Windows operating 

system comprises the computing platform.  We believe that the use of standard software 
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and hardware like this demonstrates just how accessible B&P technology has become, 

and we hope this paper helps spur interest in this technology. 

The next section describes a particular class of mixed-integer TSSPs and shows 

how to convert their standard formulations to column-oriented ones.  Several models 

from the literature provide concrete examples.  Section 3 presents the SFLP with scenario 

uncertainty; describes how to solve instances with B&P; and provides computational 

results.  Section 4 presents a version of SFLP where random parameters take on 

continuous distributions; describes how to solve instances with B&P; and provides 

computational results.  Section 5 investigates some computational enhancements, and 

section 6 presents conclusions. 

2 GENERAL METHODOLOGY 

We will show that mixed-integer TSSPs of the following special class are 

common:  

Formulation (TSSP0) 

 ( )min ( , )
i

i i i i i
i I

E h
∈

 +  ∑ ξx
c x x ξ  (1) 

 s.t. i i
i I

A
∈

=∑ x b  (2) 

 i iX i I∈ ∀ ∈x  (3) 

                            where, for all i I∈ , ( , ) min
i

i i i i ih =
y

x ξ f y  (4) 

 s.t i i i i iD B≥ +y x d      (5) 

 i iY∈y ,         (6) 



 5 

and where vec( , , , )i i i i iB D≡ξ d f .  The sets Xi require all ix  to be bounded and integral, 

and the Yi will normally require, at least, non-negativity of the yi.  The objective-function 

term ( , )
i

i i i
i I

E h
∈

  ∑ ξ x ξ  is called the recourse function, and matrices iD  are often 

referred to as recourse matrices (Walkup and Wets 1967).  We further assume that the 

model exhibits relatively complete recourse (Rockafellar and Wets 1976), which implies 

that for any i iX∈x , an optimal solution yi, satisfying constraints (5) and (6), can always 

be found.  We note that iD I=  in some of our examples, implying the property of simple 

recourse (Beale 1955, Wets 1966).  However, this is not an inherent requirement of this 

class of problems.  

The key feature of TSSP0 is that the recourse function decomposes by 

“subproblem” i. 

Because all ix  are integer, and the sets Xi are bounded, the principles of Dantzig-

Wolfe decomposition apply (Dantzig and Wolfe 1960), as extended to integer 

programming by Appelgren (1969).  (See Wolsey 1998, section 11.2, for a 

comprehensive discussion.)   To this end, let ˆ k
i iX∈x ,  ik K∈ , denote the enumerated 

first-stage solutions for subproblem i; because of relatively complete recourse, 

ˆ( , )
i

k
i ii iE h 

 ξ x ξ  is well defined for all such ˆ k
ix .  Now, because of the special structure, 

we can embed ˆ[ ( , )]
i

k
i i iE hξ x ξ , the decomposed recourse function, into the column costs of 

a column-oriented formulation for TSSP0: 
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Column-Oriented, Mixed Integer, Two-Stage Stochastic Program (CTSSP0) 

Indices 

i ∈ I subproblems  

k ∈ Ki indices for feasible solutions ˆ k
i iX∈x  

Data 

ˆ k
ix   the kth  feasible solution ˆ k

i iX∈x  

ic  first-stage costs for subproblem i  

Decision variables  

k
iλ  1 if ˆ k

i iX∈x  is selected, and 0 otherwise; 

Formulation (CTSSP0) 

 ( )ˆ ˆmin [ ( , )]
i

i

k k k
i i i i i

i I k K

E h λ
∈ ∈

+∑∑ ξλ
c x x ξ  (7) 

 ( )ˆs.t.
i

k k
i i i

i I k K

A λ
∈ ∈

=∑∑ x b  (8) 

  1
i

k
i

k K

i Iλ
∈

= ∀ ∈∑  (9) 

 { }0,1 ,k
i i kλ ∈ ∀  (10) 

Constraints (9) are often referred to as “convexity constraints.” 

CTSSP0 can be applied when first-stage variables are general integers, but binary 

variables are typical, and we assume this restriction for simplicity.  Second-stage 

variables may be continuous and/or integer. 
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Naturally, the cardinalities of the index sets Ki may be enormous, and it will 

usually be necessary to solve CTSSP0 without explicitly enumerating the ˆ k
ix .  Before 

discussing such issues, however, we would like to provide examples of how this 

reformulation technique applies to some problems from the literature.  We supply only 

short descriptions of the problems, and ask to the reader to refer to the references for 

more details.  For simplicity, we hereafter drop the subscript on the expectation operator, 

because it should be clear from the context.   

2.1    Elastic Generalized Assignment Problem     
 (Brown and Graves 1981, Appleget and Wood 2000) 

The objective of the elastic generalized assignment problem (EGAP) is to 

minimize the cost of assigning capacity-consuming tasks j ∈ J to capacitated agents i ∈ I, 

so that (i) each task is assigned to exactly one agent, and (ii) the total capacity assigned to 

agent i does not exceed its (potentially uncertain) capacity iu  unless an appropriate per-

unit penalty fi is paid.  If the capacity required by agent i to complete task j is a random 

variable ijb , and the direct cost of that assignment is ijc , then a stochastic version of the 

EGAP is (Spoerl and Wood 2003): 

SEGAP 

 ( )min , ( , )ij ij i i i i
i I j J

c x E h u
∈ ∈

 
 +   

 
∑ ∑

x
x b  (11) 

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑  (12) 

 {0,1} ,ijx i I j J∈ ∀ ∈ ∀ ∈  (13) 
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 where   ( ), ( , ) min
i

i i i i i i
y

h u f y=x b  (14) 

 s.t i ij ij i
j J

y b x u
∈

≥ −∑  (15) 

          0iy ≥ . (16) 

Here, ijx equals 1 if task j is assigned to agent i and is 0 otherwise, and iy  represents 

agent i’s capacity violation.  ( ), ( , )i i i iE h u 
 x b  therefore represents the expected 

capacity-violation penalty for agent i. 

The conversion of SEGAP to a column-oriented formulation is straightforward 

(Savelsbergh 1997 creates the analogous formulation for a deterministic, inelastic GAP).  

Each variable represents a potential (joint) assignment of tasks to a particular agent, i.e., a 

collection of tasks that an agent might be required to perform. 

Column-Oriented Formulation for SEGAP (CSEGAP)  

Indices 

i ∈ I agents  

j ∈ J tasks 

k ∈ Ki assignment of tasks to agent i 

Data 

ˆk
ijx  1 if task j is assigned to agent i in the kth assignment of tasks to agent i 

ˆ k
ix  ( )

1 2 | |

ˆ ˆ ˆ, ,...,
J

k k k
ij ij ijx x x , the kth assignment vector for agent i 
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Xi the set of all possible assignments of tasks ˆ k
ix  for agent i (The index set Ki can 

now be completely defined through this relationship:  ˆ
i

k
k K i iX∈ =x∪ .) 

ˆk
ic  expected cost of the kth assignment of tasks to agent i 

( ( )ˆ ˆ ˆ , ( , )k k k
i i i i i i ic E h u = +  c x x b  for all i I∈ and ik K∈ ) 

Decision variables  

k
iλ  1 if the kth joint assignment of tasks to agent i is chosen, and 0 otherwise; 

Formulation (CSEGAP)   

 ˆmin
i

k k
i i

i I k K
c λ

∈ ∈
∑ ∑

λ
 (17) 

 ˆs.t. 1
i

k k
ij i

i I k K
x j Jλ

∈ ∈
= ∀ ∈∑ ∑  (18) 

 1
i

k
i

k K
i Iλ

∈
= ∀ ∈∑  (19) 

 {0,1} ,k
i ii I k Kλ ∈ ∀ ∈ ∈  (20) 

Constraints (18) guarantee that each task j is assigned to exactly one agent, and 

constraints (19) ensure each agent i receives exactly one assignment of tasks.  Note that 

this simple model allows any task to be assigned to any agent, so Xi consists of all binary 

vectors of length | |J , implying that | || | 2 J
iK =  for all i.  This model can, indeed, possess a 

large number of columns. 
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2.2    Routing and Scheduling with Time Windows         
 (Desrosiers et al. 1995, Ribeiro and Soumis  1994) 

The vehicle routing problem with time windows (VRPTW) defines one important 

exemplar from this problem class.  VRPTW describes a fleet of vehicles that must deliver 

a set of customer orders, with each customer being represented by a node in a network.  

Vehicles have limited capacities, and customers specify windows of time during which 

deliveries should be made.  The model allocates orders to vehicles so that vehicle 

capacities are respected, and identifies a route for each vehicle that delivers each order 

during the customer-specified time window.  The column-oriented formulation for this 

problem looks exactly like CSEGAP, equations (17)-(20), with indices, parameters and 

variables appropriately redefined, and with capacities probably treated as deterministic 

quantities.  The parameters ˆ ,  ,k
i ik K∈x  now represent potential routes (sets of deliveries 

to customers) for vehicle i, each of which covers a subset of the customer set J.  A 

probabilistic recourse function could include expected penalties for violating time 

windows, expected penalties for exceeding maximum route duration, etc. 

2.3 Crew Scheduling (Vance et al. 1997, Day and Ryan 1997) 

Following the description in Vance et al. (1997), an airline crew-scheduler wishes 

to minimize the cost of assigning flight crews to a fixed schedule of flights.  Crew 

pairings define feasible trip itineraries that can be assigned to some crew.  Each pairing 

consists of a sequence of flights that starts and ends at a home base, respects limits on 

work hours, allows times for rest breaks, and satisfies numerous other restrictions.  Set-

partitioning models are the norm for this type of problem (e.g., Vance et al. 1997, Day 

and Ryan 1997), and these fit a simplified form of CSSTP0 in which I is a singleton, b is 
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a vector of 1s corresponding to flights that must be covered by crews, and convexity 

constraints (9) are eliminated; the columns ˆ k
i iA x  represent pairings. 

However, “home-base constraints” may need to be enforced (e.g., Butchers et al. 

2001) and these simply modify constraints (9) to 

 
i

k
i i

k K
u i Iλ

∈
≤ ∀ ∈∑ , (21) 

where I denotes the set of home bases, ui denotes the number of crews available at i I∈ , 

and the index sets Ki now represents potential pairings for crews based at i.  For the 

recourse function, we suggest a probabilistic variant on the function that Ehrgott and 

Ryan (2002) use to penalize schedules that do not allow adequate time for crews to 

switch aircraft.  Their function is based on averaged historical information, but could be 

modified to represent a penalty function integrated over empirical or fitted delay 

distributions. 

2.4 Origin-Destination Integer Multi-Commodity Flow Problem   
(Barnhart et al. 2000) 

The origin-destination integer multi-commodity flow problem restricts the 

standard, linear multi-commodity flow problem (Ahuja et al. 1993, chapter 17) by 

requiring each of a set of commodities to be shipped from its origin to its destination 

using a single path.  The formulation for this problem resembles the well-known path-

oriented (i.e., column-oriented) formulation of the linear multi-commodity flow problem 

(Ford and Fulkerson 1958), but with binary variables.  In particular, 1k
iλ =  if commodity 

i follows path ik K∈ , and 0k
iλ =  otherwise.   The main constraints of this problem 

require that the sum of all commodities flowing across each arc respect that arc’s 
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capacity.  Constraints (8), converted to inequalities, handle these requirements if we (i) 

let bj represent the capacity of arc j, and (ii) define ˆk
ij ia x  to be the amount of arc j’s 

capacity consumed by path k of commodity i.  The convexity constraints (9) guarantee 

selection of a single path, with appropriate origin and destination, for each commodity.  

For a communications network, say, each component of the recourse function 

( , )i i iE h  x ξ  might represent an expected, path-dependent penalty based on uncertain 

link availability (Girard and Sansó 1998) or uncertain “hop delay” (e.g.,  Papagiannaki  et 

al. 2003) that is independent of congestion. 

The following section investigates, in detail, one additional problem that fits the 

framework of TSSP0 and CTSSP0. 

3 SOLVING A STOCHASTIC FACILITY LOCATION PROBLEM 
BY BRANCH AND PRICE 

3.1 A Stochastic Facility Location Problem with Sole Sourcing 

A standard, deterministic, facility-location problem aims to identify the best 

locations for capacitated production facilities that will ship to established customers to 

meet those customers’ demands for some product.  The mathematical model must find 

the best trade-off between variable and fixed costs (Laporte et al. 1994):  More open 

facilities leads to lower shipping (variable) costs because plants are closer to customers, 

on average; on the other hand, opening more facilities means more facility-installation 

(fixed) costs are incurred.  The deterministic model typically assumes that all customer 

demands will be completely satisfied, and sometimes requires that each customer be 

served by a unique facility.  This latter requirement is known as sole-sourcing, and the 
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resulting model is called the (deterministic) capacitated facility-location problem with 

sole-sourcing (FLP) (Barcelo and Casanova 1984). 

Assume now that some uncertainty in the data arises in the nominally 

deterministic FLP: Does a manufacturer really know what his demands, capacities and 

costs will be in the future?  Let us represent this uncertainty through a finite, discrete set 

of scenarios indexed by s, with sc , sd  and su  representing shipping costs, customer 

demands and facility capacities in each scenario, respectively.  For simplicity, we assume 

that if the aggregate demand for a facility exceeds its capacity to produce, the facility 

pays a penalty based on the unsupplied amount.  This model is reasonable if the 

“unsatisfied demand” is actually satisfied by the relevant facility acquiring extra product 

from an outside supplier and shipping it to customers as needed.  We are now ready to 

present a formulation for the SFLP: 

Stochastic Facility Location Problem with Sole-Sourcing (SFLP)  

Indices 

i ∈ I potential facility locations 

j ∈ J customers 

s ∈ S scenarios 

Data [units]            

ic  fixed cost for installing a facility at location i [dollars] 

ijc  expected cost to supply all of customer  j’s demand from facility i, assuming  no 

shortfall in facility capacity every occurs [dollars] 
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s
jd   customer j’s demand under scenario s [tons] 

s
iu   facility i’s capacity under scenario s [tons] 

s
if   penalty for each unit of unmet demand for facility i under scenario s [dollars/tons] 

sp  probability that scenario s occurs 

Decision variables [units]     

ix  1 if facility i is opened, and 0 otherwise 

ijx  1 if customer j is assigned to facility i, and 0 otherwise 

s
iy  amount of unmet demand for facility  i under scenario s [tons] 

Formulation (SFLP) 

 
, ,
min s s

i i ij ij s i i
i I i I j J s S i I

c x c x p f y
′ ∈ ∈ ∈ ∈ ∈

+ +∑ ∑ ∑ ∑ ∑
x x y

 (22) 

 s.t. 1ij
i I

x j J
∈

= ∀ ∈∑  (23) 

 0 ,i ijx x i I j J− + ≤ ∀ ∈ ∈  (24) 

 ,s s s
j ij i i

j J
ud x y i I s S

∈
≤− ∀ ∈ ∈∑  (25) 

   {0,1}ix i I∈ ∀ ∈      (26) 

                                                                         {0,1} ,ijx i I j J∈ ∀ ∈ ∈  (27)    

                                                                     0 ,s
iy i I s S≥ ∀ ∈ ∈     (28) 
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This type of formulation is known as the extensive form of a stochastic program 

(Birge and Louveaux 1997, p. 8), because the second-stage variables and constraints are 

made explicit for all scenarios.  

3.2 A Column-Oriented Formulation for SFLP   

Here we describe a column-oriented formulation for SFLP (CSFLP) that fits 

directly into the format of CTSSP0.  In this formulation, the term assignment represents 

any collection of customers that are served by the same facility.  Actually, the forms of 

CSFLP and CSEGAP are identical, requiring only a redefinition of indices and variables 

(and definitions from SFLP which will not be repeated).  (We note that others have used 

column generation for solving deterministic facility-location problems before; see Teo 

and Shu 2004 and Lorena and Senne 2004.) 

Column-Oriented Formulation of SFLP (CSFLP) 

Indices 

k ∈ Ki possible assignments of customers to a facility i 

Data [units] 

ˆk
ijx   1 if customer j is assigned to facility i in the kth assignment of customers to that 

facility 

ˆk
ic  total expected cost of the kth assignment of customers to facility i 

( ˆ ˆ ˆk k s s
i i ij ij s i i

j J s

c c c x p f y
∈

= + +∑ ∑ , except ˆ 0k
ic =  for the null assignment) [dollars] 
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Decision variables  

k
iλ  1 if the kth assignment of customers to facility i is chosen, and 0 otherwise 

Formulation (CSFLP): Same as (17)-(20) 

A column-oriented formulation like CSFLP cannot be solved directly because it is 

impossible, or impractical, to create the full set of columns.  Therefore, each Ki is 

replaced by a subset to form a restricted master problem (RMP).  The solution to the LP 

relaxation of the RMP (LP-RMP) then yields dual variables, which can be used to 

identify one or more new columns with favorable reduced costs through one or more 

column-generation subproblems.  In the case of CSFLP, if we seed the RMP with all null 

assignments, the following subproblem arises for any facility i:    

ˆ ˆ( , )i iµCSUB π     

 ( )
,

ˆ ˆmin
i i

s s
ij j ij s i i i i

j J s S
c x p f y cπ µ

∈ ∈
− + + −∑ ∑

x y
 (29) 

 s.t. s s s
j ij i i

j J
ud x y s S

∈
≤− ∀ ∈∑  (30) 

 {0,1}ijx j J∈ ∀ ∈  (31) 

                                    0s
iy s S≥ ∀ ∈ , (32) 

where ˆ jπ  is the optimal dual variable associated with constraint (18) for customer j in 

LP-RMP, and ˆiµ  is the optimal dual variable from LP-RMP for the convexity constraint 

(19) associated with facility i.  By assuming that all of customer i’s demand is shipped 

from this customer’s assigned facility (even if a penalty accrues because the facility’s 
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capacity is exceeded), only the expected values of shipment costs, ijc , need be 

considered.  Thus, if  ijc′  denotes the random, unit shipping cost from facility i to 

customer j, [ ]ij ij jc E c d′= , or [ ] [ ]ij ij jc E c E dξ′=  if independence prevails. 

If the solution to ˆ ˆCSUB ( , )i iµπ  defines a non-null assignment of customers to 

facility i, this subproblem’s optimal objective-function value gives the reduced cost of the 

assignment with respect to the current solution of LP-RMP.  A negative reduced cost 

indicates that ˆ k
ix  should be translated into a column for the RMP, and inserted into it.  If 

the null assignment is optimal here—recall that the RMP already contains the 

corresponding column and therefore this assignment cannot be favorable—then no 

favorable column currently exists for facility i.  

3.3 Solving the Column-generation Subproblems 

The subproblems ˆ ˆCSUB ( , )i iµπ  are multi-dimensional knapsack problems 

(Weingartner and Ness 1967) with elastic penalties in each dimension; Kleywegt et al. 

(2002) refer to these as static stochastic knapsack problems.  We solve them through 

straightforward branch and bound, except that we add “explicit constraint branching” 

(Appleget and Wood 2000) by defining the general integer variables gi and adding the 

following constraint to each subproblem i: 

 0ij i
j J

x g
∈

− =∑ . (33) 

The variable gi is an “ECB variable” and receives a higher priority for branching than 

does any xij.  Intuitively, constraint branching provides a better balanced branch-and-
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bound enumeration tree, and this tends to reduce total enumeration (see Ryan and Foster 

1981).  

3.4 Solving the LP-Relaxation of the Master Problem 

Branch-and-price algorithms (e.g., Savelsbergh 1997, Barnhart et al. 1998, Silva 

2004) are appearing as complements to the branch-and-cut algorithms which can be 

found implemented in practically all commercial MIP solvers.  B&P combines a branch-

and-bound algorithm with a column-generation procedure.  Achieving good performance 

with column-generation is difficult (Lübbecke and Desrosiers 2002), but a number of 

enhancements to the basic procedure can help.  “Duals stabilization” comprises the most 

important enhancement, at least according to our research, so we describe that here 

briefly.  (See du Merle et al. 1999 and Silva 2004 for more detail.) 

“Duals stabilization” attempts to accelerate the column-generation process that 

solves CSFLP’s LP relaxation.  We follow Du Merle et al. (1999) for this purpose, and 

incorporate an elastic dynamic trust region for dual variables.  The trust region is always 

centered on the most recent solution.  It is elastic because penalized violation of the 

nominal trust region is allowed, and it is dynamic because its width and penalties are 

adjusted continually.  This trust-region mechanism is implemented by turning master-

problem equality constraints into elastic ranged constraints.  The primal (master-problem) 

elastic penalties define the dual trust region’s limits, while primal ranges define the dual 

penalties, i.e., the penalties applied if the dual variables fall outside the nominal trust 

region. 

A trust region of some sort makes sense in this context because (i) the column-

generation mechanism, when viewed in the dual, is essentially Benders decomposition 
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(Benders 1962), and (ii) Benders decomposition appears to benefit from the use of trust 

regions (e.g., Brown et al. 1987, Linderoth and Wright 2002).  Of course, many variants 

on trust regions could be applied to our problems, but this one is simple and has proven 

effective in recent column-generation experiments (Silva 2004, Singh et al. 2004).  

3.5 Computational Results 

We implement B&P using software from the COmputational INfrastructure for 

Operations Research (“COIN-OR,” or simply “COIN”), which provides a repository of 

distinct libraries that can be integrated to build optimization algorithms (Lougee-Heimer 

2003).  The COIN library labeled “BCP” provides the basic framework for a B&P 

algorithm (Ralphs and Ladanyi. 2001).  Its design anticipates a parallel/distributed 

environment, and, unfortunately, the protocol that emulates this environment in our serial 

environment incurs some computational overhead.  This overhead could be avoided with 

some additional programming, so the total solution times reported here, denoted (TT), 

exclude that overhead.  However, we note that the true CPU time for our implementations 

never exceed TT by more than 10%, and the mean overhead for all problems is only 

3.1%.  

We have implemented our B&P algorithm using COIN’s open solver interface 

(OSI), coupled with CPLEX 8.0:  The linear relaxation of the RMP and the subproblems 

are submitted to CPLEX’s LP solver and MIP solver, respectively.  We carry out all tests 

on a networked workstation, a Dell Dimension 340 with a 2 GHz Pentium 4 processor 

and 1 GB of RAM. For comparison, we also directly solve the extensive formulations of 

SFLP using CPLEX 8.0, and report these solution times under “IP” in the tables below. 
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We investigate eight groups of problems.  Each group is defined by problem size, 

meaning “number of facilities-number of customers,” and these sizes are: 5-15, 5-30, 8-

24, 8-48, 10-30, 10-40, 10-50 and 10-60.  For each problem size, we consider instances 

with one, ten or fifty scenarios.  (Larger problems with more scenarios are considered 

later.)  Because run times vary somewhat between randomly generated instances of the 

same size, we examine five different instances for each combination of problem size and 

number of scenarios.  All problems in this paper are solved to optimality. 

To generate the test problems, we first create a reference problem—the 

superscript “R” below stands for “reference’’—according to the following rules:  (i) 

Customer demands R
jd  are integers from a discrete uniform distribution U(5,25),  (ii) 

transportation costs R
ijc  are integers from U(15,25), (iii) facility capacities are 

0.8 /R R
i j

j J

u d I
∈

= ∑ , and  (iv) the fixed costs are R R
i ic Cu=  for some cost-per-unit-capacity 

conversion constant C, which is 1.5 for these examples.  Chu and Beasley (1997) use 

rules (i) and (ii) to generate the “small instances” of the generalized assignment problem.  

For our stochastic instances, demands s
jd  are uniformly distributed integers within ±20% 

of R
jd , capacities s

iu  are ±10% of R
iu , and fixed costs are simply R

i ic c= .  Also, facility i 

pays an additional 0.4maxs s
i ij

j J
f c

∈
=  dollars for each unit of demand it must satisfy through 

an outside purchase.  Clearly, the parameter settings we have chosen above are somewhat 

arbitrary.  However, testing assures us that, over a wide range of settings, the large 

differences in algorithmic performance remain large, and the conclusions reached do not 

change.  We have also experimented with problem generators that correlate costs to 
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Euclidean distances between facilities and customers that are randomly located on a 

plane, and also find that our conclusions remain the same. 

Tables 1 and 2 show TT for each problem instance solved by (i) IP, (ii) by basic 

B&P without duals stabilization and (iii) by B&P with duals stabilization. Values in bold 

indicate the fastest times among the three algorithms.  Parameter settings with duals 

stabilization are fixed for all problems tested, and we set an arbitrary limit of 7,200 

seconds on total allowed computation time.  Problems are solved to optimality. 

Problem Size (facilities-customers) 
5-15 5-30 8-24 8-48 Num. of 

Scenarios 
IP  

B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

IP 
B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

IP  
B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

IP  
B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

1 3.5 0.5 0.8 2.5 1.7 1.7 2274.9 1.1 14.5 5.8 5.0 2.7 
1 0.1 0.3 0.8 1.5 4.1 3.9 * 2.0 2.7 3.8 3.4 2.4 
1 3.2 0.6 2.0 0.9 1.4 1.9 274.1 1.6 1.8 4.5 6.4 2.7 
1 0.2 0.3 0.6 1.6 2.1 1.9 299.8 1.3 4.4 3.8 3.2 2.6 
1 3.6 0.5 1.4 8.6 2.4 2.8 1.8 0.8 0.9 5076.1 61.2 44.6 

10 1.3 1.1 1.6 4.2 3.7 3.7 881.0 4.8 9.1 142.4 7.9 4.2 
10 1.4 1.0 1.4 5.1 16.6 30.5 2987.5 4.3 7.0 39.7 6.7 5.7 
10 1.0 0.9 1.1 1.2 2.8 3.0 231.3 4.8 5.7 20.6 8.4 5.2 
10 0.4 0.6 1.3 2.4 3.2 3.6 16.4 2.7 2.9 19.8 6.7 5.9 
10 1.0 0.7 1.4 9.4 3.6 6.8 3.9 1.2 1.3 * 29.7 25.8 
50 2.5 2.3 3.0 4.9 10.1 10.2 1637.2 45.5 29.6 455.6 40.0 58.5 
50 3.1 2.3 4.4 11.0 11.1 11.1 5579.0 8.7 7.6 45.7 20.2 14.0 
50 2.8 2.3 2.7 3.4 7.8 8.5 1081.6 8.0 7.6 53.4 25.0 15.9 
50 1.3 1.4 3.1 4.3 8.6 10.1 57.4 5.8 6.0 129.1 24.3 20.9 
50 3.9 2.7 3.3 12.2 12.1 10.7 6.6 4.2 4.2 990.2 80.1 114.6 

Table legend: 
Sc:  Number of scenarios 
IP: CPLEX MIP solver with presolver on  
B&P w/o Stz: Branch-and-price without duals stabilization   
B&P w Stz: Branch-and-price with duals stabilization    
*  Problem not solved to optimality within 7,200 CPU seconds. 

Table 1.   Total time (TT) in CPU seconds, to solve randomly generated SFLPs with 
scenario uncertainty.  Three different algorithms solve five problem instances 
for each combination of size and number of scenarios.  (Note: All generated 
scenario data for the problem instance in row r, for r =1,…,10, have been 
reused in row r+5.  This accounts for apparent correlations in runtimes as 
exemplified by rows 5, 10 and 15.)  Times marked in bold font are the fastest 
among the three alternative solution methods.  
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Problem Size (facilities-customers) 
10-30 10-40 10-50 10-60 Num. of 

Scenarios 
IP  

B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

IP  
B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

IP  
B&P 
w/o 
Stz 

B&P 
w/ Stz 

IP  
B&P 
w/o 
Stz 

B&P 
w/ 
Stz 

1 * 16.7 17.0 15.1 3.0 2.2 * 67.5 143.0 21.5 6.8 3.8 
1 3.5 1.1 1.1 7.8 2.1 2.1 * 53.8 50.8 22.3 11.0 5.3 
1 44.8 1.0 1.5 14.8 2.8 2.1 1657 9.7 7.2 14.8 8.3 4.4 
1 1.4 1.3 1.5 * 36.2 10.2 * 116.8 99.1 13.5 11.9 5.2 
1 * 5.3 19.5 6.2 3.2 1.7 50 5.5 4.1 23.8 13.4 4.3 

10 * 10.3 12.9 2323.4 6.0 4.0 * 20.6 13.9 37.2 16.7 8.0 
10 5.2 2.4 1.8 860.1 5.2 3.8 * 310.4 424.2 3163.1 30.2 22.4 
10 7.0 3.3 2.6 262.6 5.6 4.1 * 18.0 14.1 140.5 23.1 14.5 
10 5.0 2.0 2.1 * 53.6 77.2 * 19.7 11.7 45.6 14.2 10.8 
10 * 15.0 29.4 613.5 5.1 11.2 * 20.5 41.2 30.7 19.7 9.6 
50 * 16.2 15.6 3347.3 20.6 14.2 * 99.1 127.2 154.6 37.7 18.8 
50 12.6 6.5 7.1 1894.9 14.5 11.6 * 37.9 22.9 * 60.0 50.7 
50 51.7 7.7 10.7 573.8 14.8 11.3 * 112.3 171.7 132.3 47.9 39.9 
50 16.6 6.7 6.0 * 30.8 27.3 * 33.9 27.9 97.1 34.4 21.5 
50 * 26.0 115.0 3559.3 17.3 12.3 * 72.7 111.5 213.3 39.7 22.2 

Table legend: same as Table 1 

Table 2.   Total time (TT) in CPU seconds, to solve randomly generated SFLPs with 
scenario uncertainty.  Three different algorithms solve five problem instances 
for each combination of size and number of scenarios.  This table explores 
how computation times change as the ratio of facilities to customers 
decreases.  Times marked in bold font are the fastest among the three 
alternative solution methods. 
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Problem Size (facilities-customers) 

5-15 5-30 8-24 8-48 
 

Num. of 
Scenarios 

 
SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

1 18.64 0.00 18.15 0.00 25.29 0.00 22.18 0.00 
1 28.48 0.00 22.33 0.00 27.25 0.05 23.26 0.00 
1 48.20 0.00 26.65 0.00 27.00 0.00 24.67 0.00 
1 16.78 0.04 18.43 0.00 34.65 0.00 22.65 0.00 
1 22.16 0.00 19.26 0.00 22.27 0.00 22.49 0.05 

10 19.21 0.03 17.11 0.00 25.93 0.07 23.28 0.00 
10 34.97 0.00 23.14 0.04 26.21 0.02 21.50 0.00 
10 37.36 0.00 24.38 0.00 28.52 0.00 23.79 0.03 
10 18.62 0.00 17.77 0.00 31.37 0.00 23.29 0.00 
10 20.09 0.00 19.47 0.00 20.93 0.00 21.13 0.00 
50 19.37 0.00 17.05 0.00 24.75 0.07 23.66 0.01 
50 37.02 0.00 23.15 0.00 25.90 0.00 21.39 0.00 
50 36.55 0.00 24.15 0.00 28.68 0.00 24.03 0.02 
50 18.87 0.00 17.86 0.00 30.04 0.00 23.73 0.00 
50 20.33 0.00 19.22 0.00 21.05 0.00 20.57 0.02 

Table 3.   Integrality gaps compared between the compact formulation of SFLP (SFLP) 
and the column-oriented formulation (CSFLP).  These results correspond to 
the problems in Table 1. 
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Problem Size (facilities-customers) 
10-30 10-40 10-50 10-60 

 
Num. of 
Scenarios 
 

SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

SFLP 
(%)  

CSFLP 
(%) 

1 22.35 0.04 32.07 0.00 40.43 0.07 20.72 0.00 
1 23.00 0.00 26.59 0.00 41.53 0.06 32.15 0.00 
1 21.04 0.00 26.16 0.00 56.96 0.02 25.89 0.00 
1 23.92 0.00 26.59 0.00 52.95 0.10 23.19 0.00 
1 38.46 0.08 27.41 0.00 45.97 0.00 22.71 0.00 

10 22.69 0.02 32.30 0.00 37.85 0.02 21.04 0.00 
10 22.28 0.00 27.02 0.00 38.12 0.12 35.53 0.01 
10 20.32 0.00 25.77 0.03 55.77 0.00 27.42 0.02 
10 21.80 0.00 27.55 0.05 48.76 0.04 23.96 0.00 
10 42.51 0.09 27.05 0.00 46.41 0.03 21.74 0.00 
50 22.66 0.00 33.43 0.00 38.46 0.03 20.21 0.00 
50 21.65 0.00 27.64 0.00 36.00 0.00 35.39 0.00 
50 20.73 0.00 25.55 0.00 55.82 0.09 26.89 0.00 
50 21.82 0.00 28.18 0.00 47.38 0.00 24.36 0.00 
50 42.30 0.06 28.03 0.00 44.95 0.06 22.23 0.00 
 

Table 4.   Integrality gaps compared between the compact formulation of SFLP (SFLP) 
and the column-oriented formulation (CSFLP).  These results correspond to 
the problems in Table 2.  

 

3.6 Discussion        

Both Tables 1 and 2 provide stark evidence that branch and price can be vastly 

superior to branch and bound for solving certain stochastic MIPs, and even certain 

deterministic MIPs as evidenced by the results for the single-scenario problems.  The key 

to this superiority clearly lies in the tighter LP lower bounds provided by CSFLP versus 

SFLP:  See Tables 3 and 4.    

One might be concerned that B&P requires so much overhead that it could not be 

effective for small problems.  However, the problems in Table 1 have only five or eight 

potential facilities, and IP outperforms B&P only in problems with five facilities, and 

then only by a small amount.  Moreover, average solution times for B&P are at least an 
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order of magnitude faster than IP, and IP cannot even solve two of the problems within 

the time limit of 7,200 CPU seconds.  Even for small problems, B&P is a good choice. 

Table 2, which covers problems with 10 facilities and 30 to 60 customers, clearly 

shows that B&P solution times are more stable and suffer less than IP when the number 

of scenarios increases.  Observe that: 23 problem instances out of 60 could not be solved 

by IP within 7,200 CPU seconds; IP never outperforms B&P; and B&P can be orders of 

magnitude faster than solving the original problem, even for single-scenario instances, 

i.e., for deterministic problems. 

Table 5, below, explores the computational limits of our current B&P 

implementation by covering a wider range of problem sizes and number of samples than 

do Tables 1 and 2.  Camm et al. (1997) solve a facility-location model for a commercial 

application with 17 potential facilities and 123 customer zones, so our largest problem is 

roughly the same size as at least one real-world problem.   We can see here (and to a 

degree in Tables 1 and 2) that solution times tend to increase only slowly, perhaps 

linearly, with the number of scenarios.  Thus, the number of scenarios does not seem to 

be a strongly limiting factor with the B&P methodology.  This bodes well for solving an 

SMIP through sampled approximating problems, since the probability of identifying the 

optimal solution for a discrete TSSP increases exponentially with the number of sampled 

scenarios (Kleywegt et al. 2002). 

Table 5 shows that problem size, in terms of facilities and customers, is a stronger 

limiting factor in solving SFLP by B&P.  We discuss potential reasons for this in the 

following sections.  
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Problem Size (facilities-customers) Num. of 
scenarios 10-60 20-60 15-80 20-100 

50 36.4 64.6 47.2 137.2 
50 35.2 55.7 65.1 257.2 
50 26.9 58.1 54.6 108.2 
50 35.9 62.1 44.0 106.0 
50 26.7 53.4 106.6 154.9 

100 48.2 136.8 132.7 229.6 
100 68.4 96.5 108.0 829.6 
100 56.2 109.4 238.3 165.7 
100 73.0 123.9 75.6 150.0 
100 51.0 90.4 76.3 257.0 
200 134.6 245.3 181.5 513.0 
200 131.3 199.4 302.2 1294.6 
200 103.7 168.9 762.1 260.7 
200 134.0 184.5 157.1 272.2 
200 103.8 174.4 156.5 555.0 
300 154.8 374.4 305.4 507.8 
300 248.7 305.8 391.2 817.0 
300 144.6 250.0 654.1 535.4 
300 164.0 320.9 493.2 493.2 
300 210.8 276.0 274.4 687.1 

Table 5.   The total time (TT) in CPU seconds, for randomly generated SFLPs with 
scenario uncertainty.  This table explores the computational limits of our 
current B&P implementation with duals stabilization.  

 

4 SOLVING A SPECIAL CASE OF SFLP EXACTLY 

Here we investigate a special case of the SFLP in which uncertain parameters are 

independent, continuously distributed random variables.  This model paradigm appears 

frequently in the literature (e.g., Louveaux and Peeters 1992, Laporte et al. 1994); 

however, such models are rarely solved exactly as we shall solve SFLP.  Even if the 

reader believes such assumptions are unreasonable in a real-world facility-location 

problem—independence of demands seem particularly unlikely in the SFLP, for 

instance—it is instructive to see that exact solutions can be achieved for such a model in 



 27 

the column-oriented framework.  Perhaps these assumptions will be more appropriate in 

other applications of our methodology. 

Consider now a random vector vec( , , )=ξ c d f  whose elements represent shipping 

costs, customer demands and unmet-demand penalties, respectively.  The column-

oriented formulation for SFLP with these random parameters resembles equations (17)-

(20), with the following definitions for the data: 

Data [units] 

ic  fixed cost for installing a facility at location i [dollars] 

ijc  unit shipping cost from facility i to  customer j [dollars/ton] 

jd   demand from customer j [tons] 

ijc  expected cost for supplying all of customer  j’s demand from facility i, i.e., 

[ ]ij ij ijc E c d=  [dollars] 

iu   capacity of facility i [tons] 

if   unit penalty for unmet demand that must be covered by facility i [dollars/tons] 

if   expected unit penalty [ ]iE f  [dollars/tons] 

ˆk
ic  total expected cost of the kth assignment of customers to facility i, 

ˆ ˆ ˆ[ ( , )]
i

k k k
i i i i i ic E h= + ξc x x ξ ) [dollars] or, more precisely, 
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ˆ0 if 0

ˆ
ˆ ˆ otherwise

k
i

k
i k k

i i i j ij i i
j J

c
f E d x u c

+

∈

 =
  =    + − +      

∑

x

c x
 (34) 

4.1 Normally Distributed Demands 

For the special-case model, demand for customer j is independent of other random 

quantities, and is assumed to be normally distributed with mean mj and variance vj, i.e., 

~ ( , )j j jd N m v .  Unmet-demand penalties are continuously distributed random variables 

that are independent of demands and other random parameters.  In fact, under 

independence, these penalties appear in the objective function only through their means, 

so they may have arbitrary distributions with finite means.  Consequently, we represent 

these penalties through their vector of means, denoted f . 

For simplicity in exposition, we also assume that the mean and variance for each 

demand jd  are integers.  The reader will see that our techniques easily extend to means 

j jmα  and variances j jvβ , where jα  and jβ  are positive scale parameters, and jm  and 

jv  represent integers running from 0 to some finite upper bound.  Given the efficiency of 

the dynamic-programming solution procedure that uses jm  and jv , the scale parameters 

can be quite small, and thus a wide range of actual mean-and-variance combinations can 

be closely approximated. 

The RMP for this model does not change from the column-oriented formulation 

(CSFLP) presented in section 3.2.  To solve this special case exactly, we will exactly 

solve the subproblems corresponding to the formulation (29)-(32).  Given equation (34),  
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the subproblem associated with facility i is this static stochastic knapsack problem 

(Kleywegt et al. 2002): 

 ( )
{0,1}

* min
ij

ij j ij i j ij i i i
x j J j J j J

z c x f E d x u cπ µ
+

∈ ∀ ∈ ∈ ∈

     = − + − + −         

∑ ∑  (35) 

where s+ ≡ max{0, s}.  Evaluating j ij i
j J

E d x u

+

∈

   −   
   

∑  is easy, because we know that 

(Kleywegt et al. 2002)     

 ( )
2

, exp ,
2π 2

m v m
E w m v m

vv

+     = Φ + −          
 (36) 

for any ( ) ( ), ~ ,w m v N m v , where ( )Φ i  denotes the cumulative distribution function of a 

standard normal random variable. 

Ignoring the constraint-violation penalties for the moment, we apply dynamic 

programming to evaluate the functions ( , , )i i ig J m v  defined as 

 ( , , ) min ( )i i i ij j ij
j J

g J m v c xπ
∈

= −∑  (37) 

                       s.t. j ij
j J

m x m
∈

≤∑  (38) 

 j ij
j J

v x v
∈

=∑  (39) 

 {0,1}ijx ∈  (40) 
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for max max0,..., , and 0,...,m m v v= = , where max max=  and j j
j J j J

m m v v
∈ ∈

=∑ ∑ .  (In 

practice, much smaller limits on mmax  and vmax can and should be used for the sake of 

efficiency.) 

Initialization: 

( , , ) 0 for 0, 0, 0;ig j m v j m v= = = =  

( , , )  for 0, 0, 0;ig j m v j m v= +∞ = ≠ ≠   

Recursion: 

 { }
max

max

1,...,
1,...,

1,...,

( , , ) min ( 1, , ), ( 1, , )i i ij j i j j
j J
m m
v v

g j m v g j m v c g j m m v vπ
=
=

=

= − − + − − −  (41) 

This recursion is similar to that for a two-dimensional knapsack problem, but for a given 

m, the objective value gi does not depend on the index v.  This variance will be used in a 

final calculation, however. 

 Now, since ˆ ix , an assignment of customers to a facility i, yields an aggregate 

demand with distribution ˆ ˆ,j ij j ij
j J j J

N m x v x
∈ ∈

 
 
 
 
∑ ∑ , the optimal objective value for (35) 

will be 

 ( ){ }
max

max max

*

1,...,
1,...,

min , , ( , )i i i i
m m
v v

z g J m v p E w m u v c µ+
=

=

 = + − + −  . (42) 

For the case where the facilities capacities iu  are also independent and normally 

distributed, and independent from the customer demands, the method just described will 
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work after making a single modification:  The expectation in equation  (42)  changes to 

( )[ ], ( )i iE w m E u v Var u + − +  
. 

4.2 Extensions 

The methodology described above will fit other problems, but numerical 

integration may be required.  Suppose, for instance, that each demand can be defined by 

1

jK

j jk j
k

d r m
=

= +∑ where all jkr  independent and identically distributed (iid) with mean 0 

and variance v, and all mj are positive integers; all ui are deterministic, here.  Then, any 

aggregate demand j ij
j J

d x
∈
∑  can be described through its integer mean j ij

j J
m m x

∈
′ = ∑ , 

and its scaled integer variance ' j
j J

v v K
∈

= ∑ .  Thus, the recursion (41) applies with 

appropriate adjustments for the scaled variances, and j ij i
j J

E d x u

+

∈

   −   
   

∑  can be 

computed by numerical integration over the distribution of j ij
j J

d x
∈
∑ .  This will be 

straightforward since that distribution is defined through the mean-shifted convolution of  

t = ij
j J

x
∈
∑  iid random variables,  which is completely defined by its bounded integer 

mean m′ , its bounded scaled-integer variance v′ , and the common distribution for jkr . 

4.3 Computational Results for Normally Distributed Demands 

To build test instances for this special case, we select each of the single-scenario 

problems from section 3, and assume that its demand represents the expected value of a 
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normally distributed demand.  The variance for each such demand is then generated as a 

discrete uniform random variable on [1, Vj], where Vj is the maximum value that assures 

P( 0) 0.001jd < ≤  (e.g., Spoerl and Wood 2003).  Table 6 displays solution times and 

integrality gaps for all 40 problem instances.  We use the software suite of section 3 for 

solving these problems, but the computer is an IBM G40, Pentium 4 laptop computer 

with 1 GB of RAM, running at 3 GHz. 
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Problem Size B&P without duals stabilization B&P with duals stabilization 

Facilities Customers 
Soln. time 
 (TT, sec.) 

Cols. Nodes 
Soln. time 
 (TT, sec.) 

Cols. Nodes 

Int. gap 
(%)     

  0.8 188 1 0.4 194 13 0.00 
  1.0 153 1 0.5 181 1 0.00 

5 15 0.5 171 1 0.4 143 1 0.00 
  0.6 192 1 0.7 205 1 0.00 
  0.7 168 1 0.6 191 1 0.00 
  11.3 443 1 9.7 404 1 0.00 
  9.3 474 1 7.3 437 1 0.00 

5 30 9.3 432 1 8.8 438 1 0.01 
  9.7 423 1 8.4 416 1 0.00 
  18.8 599 9 17.5 695 7 0.04 
  1.2 350 1   1.1 337 1 0.00 
  1.1 322 1   0.9 310 1 0.00 

8 24 3.0 466 9   1.7 326 3 0.05 
  1.2 351 1   0.8 296 1 0.00 
  1.8 385 1   1.6 363 1 0.00 
  9.1 1001 1 6.4 778 1 0.00 
  10.2 1006 1 7.0 765 1 0.01 

8 48 11.2 1166 5 11.5 1237 9 0.02 
  10.4 989 3 7.3 816 9 0.01 
  11.5 959 3 7.9 734 3 0.00 

  3.3 512 5 2.9 455 7 0.01 
  2.8 501 1 2.3 452 1 0.02 

10 30 2.7 524 1 2.0 451 1 0.00 
  3.3 526 1 2.4 461 1 0.01 
  2.5 497 3 5.7 856 3 0.03 
  6.5 823 1 5.0 708 3 0.00 
  9.3 860 1 6.5 679 1 0.00 

10 40 13.9 793 3 11.5 668 3 0.02 
  14.0 893             13 19.8 1326 5 0.03 
  10.0 791 1 6.7 662 3 0.01 
  28.5 1076 1 20.7 862 3 0.03 
  37.5 1180 5 22.9 794 5 0.01 

10 50 48.9 1624             17 65.3 2144 19 0.07 
  32.2 1303 5 34.1 1423 5 0.02 
  24.5 1105 1 17.9 837 1 0.00 
  73.4 1357 1 56.1 1221 1 0.00 
  76.1 1585        15 46.2 1263 5 0.01 

10 60 71.7 1434 1 50.1 1213 1 0.00 
  90.7 1581 5 66.9 1243 5 0.00 
  74.0 1418 1 55.6 1215 1 0.00 

Table 6.   Total time (CPU seconds) to solve SFLP with B&P when demands are 
independent and normally distributed.  The times in bold font indicate the 
fastest solution time for each problem.  (Pentium 4, 3 GHz computer with 1 
GB of RAM.) 
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Problem Size (facilities-customers) 

10-60 20-60 15-80 20-100 25-150 30-200 
Soln. 
time 
(TT, 
sec.) 

Cols. 

Soln. 
time 
(TT, 
sec.) 

Cols. 

Soln. 
time 
(TT, 
sec.) 

Cols. 

Soln. 
time 
(TT, 
sec.) 

Cols. 

Soln. 
time 
(TT, 
sec.) 

Cols. 

Soln. 
time 
(TT, 
sec.) 

Cols. 

56.1 1221 9.4 1039 110.9 1947 180.2 2421 323.2 3753 1799.7 5859 
46.2 1263 9.3 1068 80.5 1719 253.6 3144 451.5 4051 2386.7 6776 
50.1 1213 72.9 4092 73.8 1683 117.8 2284 1014.4 5057 * 6644 
66.9 1243 11.6 1080 91.4 2023 153.0 2355 613.6 4025 * 6569 
55.6 1215 29.4 2525 65.6 1585 208.9 2631 1406.7 5358 2337.7 6359 

 

Table 7.   Larger instances of SFLP. Total time (CPU seconds) to solve SFLP with 
B&P, duals stabilization only, when demands are independent and normally 
distributed.  Times marked as “*” indicate the problem could not be solved in 
2400 seconds. (Pentium 4, 3 GHz computer with 1 GB of RAM.) 

 

4.4 Discussion        

As in the Section 3, we see that duals stabilization is a useful enhancement to the 

B&P algorithm. 

With some exceptions, results displayed in Tables 1, 2, 5 and 6 indicate that B&P 

performs better on problems with a smaller facilities-to-customers ratio.  Similar results 

have been observed when solving generalized assignment problems, where the tasks-to-

agents ratio correlates positively with the number of feasible solutions the problem 

instances have (Savelsbergh 1997, Silva 2004).  In turn, the number of feasible solutions 

is positively correlated with the number of columns in the column-oriented model, and 

the more columns a problem has, the harder it must be to solve using B&P.  The glaring 

contradiction to this argument is the 10-60 column in Table 2, which shows that these 

problems are easier than the 10-50 problems.  Theoretically, these 10-60 problems may 

have more columns than the 10-50 problems, but the effective number, i.e., the number of 
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“cost-effective columns” may be smaller.  Note that Table 4 shows that the extensive 10-

60 models have tighter LP relaxations than do their 10-50 counterparts, which implies the 

system is more capacity-bound in some sense (an artifact of the problem generator).  

This, in turn, may mean that the only cost-effective columns are those that use most of a 

facility’s nominal capacity, and this is a relatively small number.  

5 OTHER COMPUTATIONAL ENHANCEMENTS 

The purpose of this paper is to describe an entirely new technique for solving a 

class of SMIPs, not to explore a wide range of computational enhancements for this 

technique.  We have found that one enhancement, duals stabilization, is important for 

good performance, so we have provided detailed computational results to demonstrate 

that fact.  However, we have begun preliminary exploration of a number of potential 

computational enhancements, and believe that this warrants a brief discussion.  Other 

researchers may wish to explore these and other potential enhancements in detail, along 

with their myriad parameter settings.  We explore the following potential enhancements: 

1. “Strong branching:” A set of variables that appear attractive for branching 

purposes, rather than a singleton, is selected, and branching is carried out for each 

variable selected.  Child problems for each branch are created, and fully 

optimized, and the most attractive branch is followed.  “Most attractive” simply 

implies the branch with minimum objective function value for our 

implementation, but other rules could be used, of course..  We only consider 

“strong-branching sets” of cardinality two:  This is a small number compared to 

standard applications of strong branching, but the B&P paradigm requires much 

more work to re-optimize after branching, so this number must be kept small.  
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2. “Solve one subproblem:” Rather than attempting to generate a favorable column 

for each subproblem before returning to the master problem, we return to the 

master problem as soon as some subproblem generates a favorable column:  The 

column is added to RMP; the LP-RMP is re-solved; the order of the subproblems 

is randomized to ensure that algorithm does not focus on one subproblem at the 

expense of others; and the search for favorable columns continues.   (Tests show 

this scheme can be an order of magnitude faster than scanning the subproblems in 

a fixed order, and substantially faster then randomizing only after scanning all 

subproblems in a temporarily fixed order.) 

3. “Delete poor columns:” Periodically, all columns with reduced cost above a given 

threshold are deleted from the RMP. 

 

Intuitively, strong branching simply extracts extra information from the 

enumeration tree, at some computational cost.  Is that cost worth paying?  In many 

problems, little or no branching takes place, so strong branching cannot help, but it also 

incurs little or no cost then. 

“Solve one subproblem” is potentially attractive because “solve all subproblems,” 

the standard approach, generates a set of columns based on a common set of dual 

variables.  Because of this, the resulting columns may exhibit much overlap in terms of 

the customers assigned.  But, overlapping columns cannot exist in an optimal solution to 

SFLP, so much column-generation effort may be wasted. 

The analog of “delete poor columns” is commonly used in the dual to column 

generation, Benders decomposition (Alvarez 2004, Brown 2004).  Benders 
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decomposition repeatedly generates and adds constraints to a master problem, and it may 

be beneficial to limit the size of the master problem by periodically eliminating non-

binding constraints.  Of course, something that is non-binding now may become binding 

later and a deleted row—column in our case—will need to be regenerated later at some 

computational cost. 

Table 7 displays the results of our preliminary exploration of these “other 

computational enhancements” on SFLP with normally distributed demands.  

(Experiments with SFLP under scenario uncertainty demonstrate similar results.)  B&P 

with duals stabilization forms the baseline for computational comparisons, and we only 

consider the other enhancements combined individually with the baseline.  Every 

potential enhancement improves computation times for at least a few problems.  Thus, 

further investigation of these techniques, combined in various ways and with various 

parameter settings, seems warranted.  However, the overwhelming improvements with 

“solve one subproblem” seem to indicate that it should be immediately adopted as a 

standard, along with duals stabilization. 
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Problem Size 

Facilities Customers 

 Baseline: 
B&P w/ 
duals 
stabilization 

 Baseline + 
 strong 
 branching 

Baseline +  
solve one 

  subproblem 

Baseline + 
delete poor 
columns 

  0.4 0.4 0.5 0.4 
  0.5 0.5 0.4 0.5 

5 15 0.4 0.3 0.2 0.4 
  0.7 0.7 0.6 0.7 
  0.6 0.5 0.6 0.5 
  9.7 9.6 7.1 9.3 
  7.3 7.2 5.7 7.1 

5 30 8.8 8.7 6.7 8.9 
  8.4 8.4 5.7 8.7 
  17.5 17.2           11.8 17.4 
    1.1 1.1  0.9 1.1 
    0.9 1.0  0.9 1.0 

8 24   1.7 1.7  1.7 1.7 
    0.8 0.9  0.9 0.8 
    1.6 1.5  1.2 1.6 
  6.4 6.2 6.0 6.2 
  7.0 6.9 6.8 6.8 

8 48 11.5 11.6 8.1 11.5 
  7.3 7.3 7.1 7.2 
  7.9 11.8 7.1 7.9 

  2.9 2.4 1.8 2.6 
  2.3 2.5 1.7 2.3 

10 30 2.0 2.2 1.8 2.0 
  2.4 2.5 1.7 2.3 
  5.7 4.7 1.7 4.7 
  5.0 5.1 4.1 4.9 
  6.5 6.9 5.0 8.0 

10 40 11.5 10.8 6.3 11.0 
  19.8 20.0 9.8 19.8 
  6.7 7.1 5.8 6.8 
  20.7 19.9 15.7 23.1 
  22.9 38.3 18.0 23.1 

10 50 65.3 57.0 32.2 62.7 
  34.1 31.3 85.0 28.1 
  17.9 18.2 21.9 17.8 
  56.1 56.3 46.8 55.7 
  46.2 46.6 34.1 44.3 

10 60 50.1 46.5 70.2 46.8 
  66.9 97.0 63.2 71.1 
  55.6 57.0 55.1 57.4 

Table 8.   The total time (TT) in CPU seconds, for solving SFLPs with normally 
distributed demands.  This table starts with B&P with duals stabilization as a 
baseline, and explores the use of other potential computational enhancements.  
Numbers in bold are the fastest times.  “Solve one subproblem” yields the 
best single improvement, but note that every potential enhancement is 
substantially better than the baseline for at least one problem. 
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6 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary 

This paper has proposed a column-oriented model for a class of two-stage 

stochastic mixed-integer programs (SMIPs), and has described examples of well-known 

deterministic optimization problems whose stochastic versions fall into this class. We 

show how to solve such problems with a branch-and-price algorithm (B&P), using a 

stochastic facility-location problem (SFLP) as an example.  We solve one version with 

scenario uncertainty as well as one with continuously distributed parameters satisfying 

certain conditions.  We solve both versions exactly, and demonstrate how the algorithm’s 

performance can be improved by “duals stabilization” and other techniques.  The open-

source code libraries of the COmputational INfrastructure for Operations Research 

(COIN-OR) provide the framework for our B&P algorithm, while CPLEX 8.0 comprises 

the solver engine. 

6.2 Conclusions 

This research demonstrates that B&P is an attractive method to solve certain 

SMIPs.  For SFLP with scenario uncertainty, B&P can be orders of magnitude faster than 

solving the original problem by branch and bound, and this can be true even for 

deterministic, i.e., single-scenario problems.  And, the ability to solve exactly an SMIP 

with continuously distributed parameters is highly unusual in the stochastic-programming 

literature.  Finally, we have shown that the COIN/BCP software will run successful under 
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Microsoft Windows.  We believe this should make the B&P methodology more widely 

accessible to researchers and commercial users.   

6.3 Recommendations for Further Work 

The B&P approach can be used to solve, at least approximately, SMIPs of the 

class described in section 2, but with more general probability distributions.  For instance, 

the methods of “sample-average approximations” (Mak et. al 1999, Kleywegt et al. 2002) 

provide probabilistic guarantees on solution quality and are based on repeated solutions 

of sampled approximating problems.  However, a sampled approximating problem is 

essentially identical to a stochastic program with scenario uncertainty. 

Sampled subproblems can be used to identify favorable columns in a “nearly 

exact algorithm,” too.  Suppose that once a subproblem’s integer variables are fixed, i.e., 

a column of the model has been defined, the expected cost of that column can be 

estimated highly accurately through sampling.  This certainly holds for SFLP, where the 

penalties associated with, say, 10,000 sampled demands for some fixed customers-to-

facility assignment can be sampled and averaged in a fraction of a second.  For all intents 

and purposes then, that average will exactly equal the expected cost for the column, and 

the LP-relaxation of a master problem containing such columns would yield exact dual 

solutions.  The only theoretical gap in this procedure is that the solution of a sampled 

subproblem might indicate that a column is favorable, but extended sampling would 

reveal that it is not.  If we solve many sampled subproblems and cannot identify an 

improving column, then we might become convinced that we have, in fact, solved the 
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LP-RMP.  However, a formal procedure will need to be constructed to provide a rigorous 

“level of conviction.” 

Finally, we note that the COIN/BCP software in originally intended for use in a 

distributed/parallel environment.  It will be interesting to investigate how well our 

procedures perform in such an environment.  
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